As I explained on Tuesday, I’m currently writing articles for this website that summarize the results of a study, on which I’m one of thirteen co-authors, of various types of decays that the newly-discovered Higgs particle might exhibit, with a focus on measurements that could be done now with 2011-2012 Large Hadron Collider [LHC] data, or very soon with 2015-2018 data. See Tuesday’s post for an explanation of what this is all about.
On Tuesday I told you I’d created a page summarizing what we know about possible Higgs decays to two new spin-zero particles, which in turn decay to quark pairs or lepton pairs according to our general expectation that heavier particles are preferred in spin-zero-particle decays. A number of theories (including models with more Higgs particles, certain non-minimal supersymmetric models, some Little Higgs models, and various dark matter models) predict this possibility.
Today I’ve added to that page (starting below figure 4) to include possible Higgs decays to two new spin-zero particles which in turn decay to gluon or photon pairs, according to our general expectation that, if the new spin-zero particles don’t interact very strongly with quarks or leptons, then they will typically decay to the force particles, with a rate roughly related to the strengths of the corresponding forces. While fewer known theories directly predict this possibility compared to the one in the previous paragraph, the ease of looking for Higgs particles decaying to four photons motivates an attempt to do so in current data.
I have a few other classes of Higgs particle exotic decays to cover, so more articles on this subject will follow shortly!
Filed under: Higgs, LHC Background Info, Particle Physics Tagged: atlas, cms, DarkMatter, ExoticDecays, Higgs, LHC, particle physics, supersymmetry